

Unit 1 Lesson 4

### **Students will be able to:**

• Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint and understand concepts of angle measurement.

- Measure angles in whole-number degrees using a protractor.
  - Sketch angles of specified measure.
  - Know precise definitions of angle.



Key Vocabulary: Degrees Protractor Right angle Acute angle Obtuse angle



- <u>An angle</u> is a figure formed by two non collinear rays that have a common endpoint.
- The common endpoint is called <u>the vertex</u> and the two rays that make up the angle are called <u>the sides</u> <u>of the angle</u>.



There are several ways to name the angle.



Use the vertex and a point from each side. ∠CBA and ∠ABC

Use the vertex only.  $\angle B$ 

Use a number.  $\angle 3$ 

Angles are measured in units called degrees.

The symbol for degree is °



#### **Angles Measure Postulate**

For every angle, there is a unique positive number between 0 and 180 called the degree measure of the angle.



 $m \angle FDR = k$ 0 < k < 180



**Protractor Postulate** describes the relationship between angle measures and numbers.

On a plane, given  $\overrightarrow{AB}$  and a number t between 0 and 180, there is exactly one ray with endpoint A extending on each side of  $\overrightarrow{AB}$  such that the degree measure of the angle formed is t.





A protractor can be used to approximate the measure of an angle.

How to use the protractor:

1. Place the notch of the protractor at the vertex of the angle.

2. Place the edge of the protractor along a side of the angle so that the scale reads 0.

3. Read the angle size by reading the degree measure that corresponds to the second side of the angle.



#### **Types of Angles**





#### **Types of Angles**

**Obtuse Angle** 

**Straight Angle** 





 $180 > m \angle 3 > 90$ 





## Sample Problem 1: Find the measure of each angle. Then classify each angle.





# Sample Problem 1: Find the measure of each angle. Then classify each angle.





## Sample Problem 1: Find the measure of each angle. Then classify each angle.





# Sample Problem 1: Find the measure of each angle. Then classify each angle.



*m∠FHT* = 135 Angle *FHT* measures 135° Obtuse angle



**Sample Problem 2:** Use a protractor to draw each angle. Then classify each angle.

a.  $m \angle COB = 15$ 



**Sample Problem 2:** Use a protractor to draw each angle. Then classify each angle.

a.  $m \angle COB = 15$ 



#### Acute angle



**Sample Problem 2:** Use a protractor to draw each angle. Then classify each angle.

b.  $m \angle HTR = 150$ 



**Sample Problem 2:** Use a protractor to draw each angle. Then classify each angle.

b.  $m \angle HTR = 150$ 



**Obtuse angle** 



### **Angle Addition Postulate**

If *T* is in the interior of  $\angle KLM$ , then the measure of  $\angle KLM$  is equal to the sum of the measures of  $\angle MLT$  and  $\angle TLK$ .





**Sample Problem 3:** Find the indicated angle measures.

a.  $m \angle RTD = 39$   $m \angle DTE = 56$   $m \angle RTE = ?$ 





**Sample Problem 3: Find the indicated angle measures.** 

a.  $m \angle RTD = 39$   $m \angle DTE = 56$   $m \angle RTE = ?$ 



$$m \angle RTE = m \angle RTD + m \angle DTE$$
$$m \angle RTE = 39 + 56$$
$$m \angle RTE = 95$$



**Sample Problem 3: Find the indicated angle measures.** 

b.  $m \angle LMA = 164$   $m \angle GMA = 56$   $m \angle LMG = ?$ 





**Sample Problem 3: Find the indicated angle measures.** 

b.  $m \angle LMA = 164$   $m \angle GMA = 56$   $m \angle LMG = ?$ 



 $m \angle LMA = m \angle LMG + m \angle GMA$   $m \angle LMG = m \angle LMA - m \angle GMA$   $m \angle LMG = 164 - 56$  $m \angle LMG = 108$ 



- <u>The bisector of an angle</u> is the ray with its endpoint at the vertex of the angle extending into the interior of the angle.
- The bisector separates the angle into two angles of equal measure.



**Sample Problem 4: Find the indicated angle measures.** 

a. If  $\overrightarrow{AC}$  bisects  $\angle LAG$  and  $m \angle LAG = 64$ , find  $m \angle LAC$  and  $m \angle CAG$ .





**Sample Problem 4: Find the indicated angle measures.** 

a. If  $\overrightarrow{AC}$  bisects  $\angle LAG$  and  $m \angle LAG = 64$ , find  $m \angle LAC$  and  $m \angle CAG$ .



 $m \angle LAG = m \angle LAC + m \angle CAG$  $m \angle LAC = m \angle CAG$  $m \angle LAG = 2 * m \angle LAC$  $m \angle LAC = \frac{m \angle LAG}{2} = \frac{64}{2}$  $m \angle LAC = 32 \quad m \angle CAG = 32$ 

**Sample Problem 4: Find the indicated angle measures.** 

b. If  $\overrightarrow{TG}$  bisects  $\angle PTD$  and  $m \angle PTG = 26$ , find  $m \angle PTD$  and  $m \angle GTD$ .





**Sample Problem 4:** Find the indicated angle measures.

**b.** If  $\overrightarrow{TG}$  bisects  $\angle PTD$  and  $m \angle PTG = 26$ , find  $m \angle PTD$  and  $m \angle GTD$ .



 $m \angle GTD = m \angle PTG$  $m \angle GTD = 26$  $m \angle PTD = m \angle PTG + m \angle GTD$  $m \angle PTD = 26 + 26$  $m \angle PTD = 52$ 

