姑 MathTeacherCoach.com

Pacing Guide

Mathematics 6 $^{\text {th }}$ Grade

Unit 1 - Ratios and Proportional Relationships

Common Core Standard Covered

1-1 Ratios

CCSS.MATH.CONTENT.6.RP.A. 1

1-2 Unit Rate

CCSS.MATH.CONTENT.6.RP.A. 2

Total Number of Instructional Days24

	Common Core Standard Covered	Major Topics/Concepts	Number of days
1-1	Ratios CCSS.MATH.CONTENT.6.RP.A. 1	- Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."	3
1-2	Unit Rate CCSS.MATH.CONTENT.6.RP.A. 2	- Understand the concept of a unit rate a / b associated with a ratio $\mathrm{a}: \mathrm{b}$ with $\mathrm{b} \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger."	3

徝 MathTeacherCoach.com

1-3 Equivalent Ratios and Tables

CCSS.MATH.CONTENT.6.RP.A. 3 CCSS.MATH.CONTENT.6.RP.A.3.A

1-4 Comparing Ratios

CCSS.MATH.CONTENT.6.RP.A. 3 CCSS.MATH.CONTENT.6.RP.A.3.A

1-5 Proportions

CCSS.MATH.CONTENT.6.RP.A. 3 CCSS.MATH.CONTENT.6.RP.A.3.A

- Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
- Make tables of equivalent ratios relating quantities with wholenumber measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
- Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
- Make tables of equivalent ratios relating quantities with wholenumber measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
- Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
- Make tables of equivalent ratios relating quantities with wholenumber measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.

朕 MathTeacherCoach.com

1-6 Percent and Rates Per 100
CCSS.MATH.CONTENT.6.RP.A.3.C
1.8 Ratio and Measurement Units
CCSS.MATH.CONTENT.6.RP.A.3.D

- Find a percent of a quantity as a rate per 100 (e.g., 30% of a 3 quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part and the percent.
- Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part and the percent.
- Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.

Total Number of Instructional Days

28
Unit 2 - Operations of Fractions and DecimalsMajor Topics/Concepts

- Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem.

楜 MathTeacherCoach.com

2-2 Dividing Whole Number and Fractions

CCSS.MATH.CONTENT.6.NS.A. 1

- Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem.
- Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem.
- Fluently divide multi-digit numbers using the standard algorithm.

CCSS.MATH.CONTENT.6.NS.B. 2

2-5 Add and Subtract Multi-Digit Decimals

CCSS.MATH.CONTENT.6.NS.B. 3

2-6 Multiply and Divide Multi-Digit Decimals

CCSS.MATH.CONTENT.6.NS.B. 3

- Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.
- Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

䟼 MathTeacherCoach.com

2-7 Least Common Multiple and Greatest Common Factor

CCSS.MATH.CONTENT.6.NS.B. 4

2-8 The Distributive Property and the Products of Decimals

CCSS.MATH.CONTENT.6.NS.B. 4

Unit 3 - Rational Numbers

Common Core Standard Covered

3-1 Positive and Negative Numbers

CCSS.MATH.CONTENT.6.NS.C. 5 CCSS.MATH.CONTENT.6.NS.C.6.A

- Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor.
- Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor.

Major Topics/Concepts

- Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
- Recognize opposite signs of numbers as indicating locations on

Number

 of Days
姑司 MathTeacherCoach.com

3-2 Operations on Positive and Negative Numbers

CCSS.MATH.CONTENT.6.NS.C. 5 CCSS.MATH.CONTENT.6.NS.C.6.A

3-3 Rational Numbers

CCSS.MATH.CONTENT.6.NS.C. 7 CCSS.MATH.CONTENT.6.NS.C.7.A

3-4 Writing and Interpreting Inequalities in Rational Numbers

CCSS.MATH.CONTENT.6.NS.C.7.A CCSS.MATH.CONTENT.6.NS.C.7.B
opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.

- Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
- Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.
- Understand ordering and absolute value of rational numbers.
- Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret $-3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right.
- Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret $-3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right.
- Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact that $-3^{\circ} \mathrm{C}$ is warmer than $-7{ }^{\circ} \mathrm{C}$.

謿 MathTeacherCoach.com

3-5 Absolute Value of Rational Numbers

CCSS.MATH.CONTENT.6.NS.C.7.D

- Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars.
- Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.
- Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
- Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.

臤 MathTeacherCoach.com

Unit 4 - Expressions and Equations

\author{

Common Core Standard Covered

 4-1 The Relationship of Operations
 CCSS.MATH.CONTENT.6.EE.A. 3
 CCSS.MATH.CONTENT.6.EE.A. 4}

Major Topics/Concepts

- Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y)$; apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$.
- Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they name the same number regardless of which number y stands for.
- Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they name the same number regardless of which number y stands for.

娣 MathTeacherCoach.com

4-3 The Order of Operations

CCSS.MATH.CONTENT.6.EE.A.2.C

4-4 Substitute Letters and Numbers

CCSS.MATH.CONTENT.6.EE.A.2.C CCSS.MATH.CONTENT.6.EE.A. 4

4-5 Expanded and Standard Form of Multiplication Expressions

CCSS.MATH.CONTENT.6.EE.A.2.A CCSS.MATH.CONTENT.6.EE.A.2.B

- Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations).
- Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations).
- Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they name the same number regardless of which number y stands for.
- Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.
- Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8$ $+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.

梸 MathTeacherCoach.com

4-6 Equivalent Expressions

CCSS.MATH.CONTENT.6.EE.A. 3
CCSS.MATH.CONTENT.6.EE.A. 4
CCSS.MATH.CONTENT.6.EE.A.2.C

4-7 Writing and Evaluating Expressions

CCSS.MATH.CONTENT.6.EE.A.2.A CCSS.MATH.CONTENT.6.EE.A.2.C CCSS.MATH.CONTENT.6.EE.B. 6

- Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y)$; apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$.
- Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they name the same number regardless of which number y stands for.
- Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=$ s^{3} and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.
- Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.
- Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=$ s^{3} and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.

国 MathTeacherCoach.com

4-8 Solutions of Equations

CCSS.MATH.CONTENT.6.EE.B. 5 CCSS.MATH.CONTENT.6.EE.B. 6

4-9 Solving One-Step Equations

CCSS.MATH.CONTENT.6.EE.B. 5 CCSS.MATH.CONTENT.6.EE.B. 6 CCSS.MATH.CONTENT.6.EE.B. 7

- Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
- Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
- Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
- Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
- Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
- Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.

楜 MathTeacherCoach.com

4-10 Solving Two-Step and Multi-Step Equations

CCSS.MATH.CONTENT.6.EE.B. 5 CCSS.MATH.CONTENT.6.EE.B. 6 CCSS.MATH.CONTENT.6.EE.B. 7

Unit 5 - Inequalities

Common Core Standard Covered

5-1 Inequalities
 CCSS.MATH.CONTENT.6.EE.B. 5
 CCSS.MATH.CONTENT.6.NS.C.7.A
 CCSS.MATH.CONTENT.6.NS.C.7.B

- Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
- Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
- Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.

Total Number of Instructional Days

Major Topics/Concepts

Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

- Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram.
- Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact

睩 MathTeacherCoach.com

5-2 Solving One-Variable Inequalities
CCSS.MATH.CONTENT.6.EE.B. 5 CCSS.MATH.CONTENT.6.EE.B. 6 CCSS.MATH.CONTENT.6.EE.B. 8

5-3 Solutions of Inequalities CCSS.MATH.CONTENT.6.EE.B. 5 CCSS.MATH.CONTENT.6.EE.B. 8

that $-3^{\circ} \mathrm{C}$ is warmer than $-7{ }^{\circ} \mathrm{C}$.

- Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
- Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
- Write an inequality of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.
- Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
- Write an inequality of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.
- Write an inequality of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.

相 MathTeacherCoach.com

5-5 Applications of Inequalities

CCSS.MATH.CONTENT.6.EE.B. 8

Unit 6 - Geometry

Common Core Standard Covered

6-1 Area of Special Quadrilaterals

CCSS.MATH.CONTENT.6.G.A. 1

6-2 Area of Right Triangles

CCSS.MATH.CONTENT.6.G.A. 1

6-3 The Area of All Triangles

CCSS.MATH.CONTENT.6.G.A. 1

- Write an inequality of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.

Total Number of Instructional Days
24

Major Topics/Concepts

- Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.
- Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.
- Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.

败 ${ }^{2}$ MathTeacherCoach.com

6-4 The Area of Polygons Through Composition and Decomposition

CCSS.MATH.CONTENT.6.G.A. 1

6-5 Volume of Right Rectangular Prisms

CCSS.MATH.CONTENT.6.G.A. 2

6-6 Polygons on the Coordinate Plane

CCSS.MATH.CONTENT.6.G.A. 3

6-7 Perimeter and Area of Polygons on the Coordinate Plane

CCSS.MATH.CONTENT.6.G.A. 3

- Find the area of right triangles, other triangles, special quadriaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.
- Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=I w$ h and $V=b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.
- Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.
- Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.

臤 MathTeacherCoach.com

6-8 Nets and Surface Area
CCSS.MATH.CONTENT.6.G.A. 4

Unit 7 - Data Displays

Common Core Standard Covered

7-1 Statistical Questions

CCSS.MATH.CONTENT.6.SP.A. 1

7-2 Data Distribution and Dot Plots

CCSS.MATH.CONTENT.6.SP.B. 4

7-3 Data Distribution and Histograms

CCSS.MATH.CONTENT.6.SP.B. 4

- Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.

Total Number of Instructional Days

Major Topics/Concepts

- Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.
- Display numerical data in plots on a number line, including dot plots, histograms and box plots.
- Display numerical data in plots on a number line, including dot plots,

Number histograms and box plots.

䟼 MathTeacherCoach.com

7-4 The Mean and Mean Absolute Deviation

CCSS.MATH.CONTENT.6.SP.A. 2 CCSS.MATH.CONTENT.6.SP.A. 3
CCSS.MATH.CONTENT.6.SP.B.5.C

7-5 The Median, Range, and Interquartile Range

CCSS.MATH.CONTENT.6.SP.B. 5 CCSS.MATH.CONTENT.6.SP.B.5.A CCSS.MATH.CONTENT.6.SP.B.5.B CCSS.MATH.CONTENT.6.SP.B.5.C CCSS.MATH.CONTENT.6.SP.B.5.D

7-6 Understanding Box Plots

CCSS.MATH.CONTENT.6.SP.B. 4 CCSS.MATH.CONTENT.6.SP.B. 5

- Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.
- Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.
- Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
- Summarize numerical data sets in relation to their context, such as by:
- Reporting the number of observations.
- Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.
- Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
- Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.
- Display numerical data in plots on a number line, including dot plots, histograms, and box plots.
- Summarize numerical data sets in relation to their context, such as by:
- Describing the nature of the attribute under investigation, including

蛙 MathTeacherCoach.com

CCSS.MATH.CONTENT.6.SP.B.5.A CCSS.MATH.CONTENT.6.SP.B.5.B CCSS.MATH.CONTENT.6.SP.B.5.C CCSS.MATH.CONTENT.6.SP.B.5.D

7-7 Comparing Data Distributions

CCSS.MATH.CONTENT.6.SP.B. 4 CCSS.MATH.CONTENT.6.SP.B. 5
CCSS.MATH.CONTENT.6.SP.B.5.A CCSS.MATH.CONTENT.6.SP.B.5.B CCSS.MATH.CONTENT.6.SP.B.5.C
CCSS.MATH.CONTENT.6.SP.B.5.D

7-8 Making a Statistical Project

CCSS.MATH.CONTENT.6.SP.A. 1
CCSS.MATH.CONTENT.6.SP.B.5.A
CCSS.MATH.CONTENT.6.SP.B.5.B
how it was measured and its units of measurement.

- Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
- Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.
- Display numerical data in plots on a number line, including dot plots, histograms, and box plots.
- Summarize numerical data sets in relation to their context, such as by:
- Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.
- Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
- Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.
- Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.
- Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.

裁 MathTeacherCoach.com

- Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.

