Name a three-dimensional figure that can be 1. formed from each net.

Use isometric dot paper to sketch a rectangular prism that is 2 units high. The bases are rectangles with 3 unit's length and 2 unit's width.

Make an isometric drawing of each on isometric dot paper.

Draw four points, D, F, L and K in plane π . Points D, F and K are collinear. Then sketch \overrightarrow{LF} and \overrightarrow{DK} .

- 5. Draw and label figure for each relationship.
- Line segment \overline{NM} a.
- b. Line \overrightarrow{GR}

c. Ray \overrightarrow{OR} and ray \overrightarrow{OT}

Refer to each figure.

Name the intersection of plane π and line \overrightarrow{PJ} .

Name the intersection of plane τ and line \overrightarrow{PJ} .

Name a point that is coplanar with B and P.

Name the opposite ray of ray \overrightarrow{JM} .

Find the length of each segment using number line. Determine whether each of the segments is congruent. 7.

$$IY = ? YR = ? RU = ? IU = ?$$

8. Find the value of x and the length of each segment using segment addition postulate.

Point A is between points S and K.

The points are collinear.

$$SA = x - 5$$
 $AK = x - 3$ $SK = 10$

$$\overline{SA} = ? \quad \overline{AK} = ?$$

9. Find the measure of each angle.

m (CDE m (EDD m (DDC =2

10. Find the indicated angle measures.

If \overrightarrow{AM} bisects $\angle RAT$ and $m \angle RAT = 142$, find $m \angle RAM$ and $m \angle MAT$.

11. Find the value of x and then the indicated angle measures.

 $m \angle RAC$, $m \angle BAN$, $m \angle BAC$, and $m \angle NAR = ?$

12. Find the value of x and then the indicated angle measures.

If angles $\angle AKL$ and $\angle BKL$ are supplementary and $m\angle AKL = 3x + 20$, $m\angle BKL = 2x + 10$, what are $m\angle AKL$ and $m\angle BKL$?

13. Expressions are given for two side lengths of regular polygon. Find the value of x.

Name: _____ Period: ____ Date: _____ Unit 1 - Geometry Basics Test

- Draw a figure that fits the description. 14.
- **Concave dodekagon** a.
- b. Convex decagon
- c. **Convex quadrilateral**

Determine the point $\it C$ on the $\it y$ -axis that is equidistant from $\it A(4,1)$ and $\it B(-4,-1)$ **15.**

Determine if A(1,1), B(6,1) and C(6,4) are the vertices of a right triangle. 16.

Name: ______ Period: _____ Date: _____ Unit 1 - Geometry Basics Test

Draw the figure in the coordinate plane. Find the perimeter and area. **17**.

$$A(-5,-4)$$
, $T(3,-4)$, $B(-5,4)$ and $C(3,4)$
 $P_{ABCT} = ?$ $A_{ABCT} = ?$

18. Find the area of the figure.

Construct the bisector of the given angle. 19.

Name: ______Period: _____ Date: ______
Unit 1 - Geometry Basics Test

20. Construct a line parallel to a given line through a point not on the given line.

ANSWERS

Name a three-dimensional figure that can be formed from each net.

Triangular pyramid (Tetrahedron)

Make an isometric drawing of each on isometric dot paper.

Use isometric dot paper to sketch a rectangular prism that is 2 units high. The bases are rectangles with 3 unit's length and 2 unit's width.

Draw four points, D, F, L and K in plane π . Points D, F and K are collinear. Then sketch \overrightarrow{LF} and \overrightarrow{DK} .

- 5. Draw and label figure for each relationship.
- a. Line segment \overline{NM}
- b. Line \overrightarrow{GR}

c. Ray \overrightarrow{OR} and ray \overrightarrow{OT}

Refer to each figure. 6.

Name the intersection of plane π and line \overrightarrow{PJ} .

Point /

Name the intersection of plane τ and line \overrightarrow{PJ} .

Point P

Name a point that is coplanar with B and P.

Point R

Name the opposite ray of ray \overrightarrow{JM} .

Ray \overrightarrow{JA}

Find the length of each segment using number line. Determine whether each of the segments is congruent. 7.

IY = ? YR = ? RU = ? IU = ?

$$IY = |-6 - (-4)| = |-6 + 4| = |-2| = 2$$

 $YR = |-4 - (-2)| = |-4 + 2| = |-2| = 2$

$$RU = |-2 - 6| = |-8| = 8$$

$$IU = |-6 - 6| = |-12| = 12$$

$$IY = \dot{Y}R$$

 $\overline{IY} \cong \overline{YR}$

8. Find the value of x and the length of each segment using segment addition postulate.

Point A is between points S and K. The points are collinear.

$$SA = x - 5 \qquad AK = x - 3 \quad SK = 10$$

$$\overline{SA} = ? \quad \overline{AK} = ?$$

$$SA + AK = SK$$

 $x - 5 + x - 3 = 10$
 $2x - 8 = 10$
 $2x - 8 + 8 = 10 + 8$
 $2x = 18$
 $x = 9$

$$SA = x - 5$$

$$SA = 9 - 5 = 4$$

$$\overline{SA} = 4$$

$$AK = x - 3$$

$$AK = 9 - 3 = 6$$

$$\overline{AK} = 6$$

Find the measure of each angle. 9.

$$m \angle CBE = |135 - 100| = 35$$

Acute angle
 $m \angle EBR = |100 - 60| = 40$
Acute angle
 $m \angle DBC = 135$
Obtuse angle

Find the indicated angle measures. 10.

> If \overrightarrow{AM} bisects $\angle RAT$ and $m \angle RAT = 142$, find $m \angle RAM$ and $m \angle MAT$.

$$m \angle RAT = 142$$

 $m \angle RAM = ?$ $m \angle MAT = ?$

$$m \angle RAT = m \angle RAM + m \angle MAT$$

$$m \angle RAM = m \angle MAT$$

$$m \angle RAT = 2 * m \angle RAM$$

$$m \angle RAM = \frac{m \angle RAT}{2}$$

$$m \angle RAM = \frac{142}{2}$$

$$m \angle RAM = 71$$

$$m \angle MAT = m \angle RAM$$
$$m \angle MAT = 71$$

11. Find the value of x and then the indicated angle measures.

 $m \angle RAC$, $m \angle BAN$, $m \angle BAC$, and $m \angle NAR = ?$

$$m \angle RAC = m \angle BAN$$
 as vertical angles
 $x + 42 = 3x - 58$
 $x + 42 + 58 = 3x - 58 + 58$

 $m \angle RAC = x + 42$ $m \angle BAN = 3x - 58$

$$x + 12 + 30 = 3x$$

$$x + 100 - x = 3x - x$$

$$100 = 2x$$

$$x = 50$$

$$m\angle RAC = x + 42$$

$$m\angle RAC = 50 \pm 42$$

$$m \angle BAC = 180 - m \angle RAC$$

$$m \angle RAC = 50 + 42$$

$$m \angle BAC = 180 - 92$$

$$m\angle RAC = 92$$

$$m \angle BAC = 88$$

$$m \angle BAN = 92$$

$$m \angle NAR = 88$$

12. Find the value of x and then the indicated angle measures.

 $(3x - 58)^{\circ}$

If angles $\angle AKL$ and $\angle BKL$ are supplementary and $m \angle AKL = 3x + 20$, $m \angle BKL = 2x + 10$, what are $m \angle AKL$ and $m \angle BKL$?

$$m \angle AKL = 3x + 20$$
,
 $m \angle BKL = 2x + 10$
 $m \angle AKL = ?$ $m \angle BKL = ?$

$$180 = m \angle AKL + m \angle BKL$$

$$180 = 3x + 20 + 2x + 10$$

$$180 = 5x + 30$$

$$180 - 30 = 5x + 30 - 30$$

$$150 = 5x$$

$$x = 30$$

$$m \angle AKL = 3x + 20$$
 $m \angle BKL = 2x + 10$
 $m \angle AKL = 3 * 30 + 20$ $m \angle BKL = 2 * 30 + 10$
 $m \angle AKL = 90 + 20$ $m \angle BKL = 60 + 10$

$$m\angle AKL = 110$$

$$m \angle BKL = 70$$

13. Expressions are given for two side lengths of regular polygon. Find the value of x.

$$\overline{AB} = 2x - 20
\overline{AC} = x + 10
\overline{AB} = \overline{AC}
2x - 20 = x + 10
2x - 20 - x = x + 10 - x
x - 20 = 10
x - 20 + 20 = 10 + 20
x = 30$$

$$\overline{AB} = 2x - 20$$

$$\overline{AB} = 2 * 30 - 20$$

$$\overline{AB} = 60 - 20$$

$$\overline{AB} = 40$$

$$\overline{AB} = 40$$

$$\overline{AC} = x + 10$$

$$\overline{AC} = 30 + 10$$

- 14. Draw a figure that fits the description.
- a. Concave dodekagon
- b. Convex decagon
- c. Convex quadrilateral

15. Determine the point C on the y-axis that is equidistant from A(4,1) and B(-4,-1)

$$C(0,y)$$

$$A(4,1), C(0,y) \text{ and } B(-4,-1)$$

$$d(A,C) = d(C,B)$$

$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$\sqrt{(0-4)^2 + (y-1)^2} = \sqrt{(0-(-4))^2 + (y-(-1))^2}$$

$$(0-4)^2 + (y-1)^2 = (0+4)^2 + (y+1)^2$$

$$(4)^2 + (y-1)^2 = (4)^2 + (y+1)^2$$

$$16 + y^2 - 2y + 1 = 16 + y^2 + 2y + 1$$

$$16 + y^2 - 2y + 1 - y^2 = 16 + y^2 + 2y + 1 - y^2$$

$$-2y + 17 = 2y + 17$$

$$-2y + 17 - 2y = 2y + 17 - 2y$$

$$-4y + 17 = 17$$

$$-4y + 17 - 17 = 17 - 17$$

$$-4y = 0$$

$$y = 0$$

$$C(0,0)$$

16. Determine if A(1,1), B(6,1) and C(6,4) are the vertices of a right triangle.

$$d(A,B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d(A,B) = \sqrt{(6-1)^2 + (1-1)^2}$$

$$d(A,B) = \sqrt{(5)^2 + (0)^2}$$

$$d(A,B) = \sqrt{25+0}$$

$$d(A,B) = 5$$

$$d(B,C) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d(B,C) = \sqrt{(6-6)^2 + (4-1)^2}$$

$$d(B,C) = \sqrt{(0)^2 + (3)^2}$$

$$d(B,C) = \sqrt{9}$$

$$d(B,C) = 3$$

$$d(A,C) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d(A,C) = \sqrt{(6-1)^2 + (4-1)^2}$$

$$d(A,C) = \sqrt{(5)^2 + (3)^2}$$

$$d(A,C) = \sqrt{25 + 9}$$

$$d(A,C) = \sqrt{34}$$

$$(\overline{AC})^2 = (\overline{AB})^2 + (\overline{BC})^2$$

$$(\sqrt{34})^2 = (5)^2 + (3)^2$$

$$34 = 25 + 9$$

$$34 = 34$$

17. Draw the figure in the coordinate plane. Find the perimeter and area.

$$A(-5,-4)$$
, $T(3,-4)$, $B(-5,4)$ and $C(3,4)$
 $P_{ABCT} = ?$ $A_{ABCT} = ?$

$$P_{ABCT} = AT + AB + BC + CT$$

 $AT = AB = BC = CT$
 $P_{ABCT} = 4 * 8 units$
 $P_{ABCT} = 32 units$

$$A(-5,-4)$$
, $T(3,-4)$, $B(-5,4)$ and $C(3,4)$
 $P_{ABCT} = ?$ $A_{ABCT} = ?$

$$A(-5,-4), T(3,-4)$$
 $A(-5,-4), B(-5,4)$
 $AT = |3 - (-5)|$ $AB = |4 - (-4)|$
 $AT = |8|$ $AB = |8|$
 $AT = |8|$ $AB = |8|$

$$B(-5,4), C(3,4)$$
 $C(3,4), T(3,-4)$
 $BC = |3 - (-5)|$ $CT = |-4 - 4|$
 $BC = |8|$ $CT = |-8|$
 $BC = 8 \text{ units}$ $CT = 8 \text{ units}$

SQUARE

$$A_{ABCT} = AT * AB$$

 $A_{ABCT} = 8 \text{ units } * 8 \text{ units}$
 $A_{ABCT} = 64 \text{ units}^2$

18. Find the area of the figure.

A =?
A =
$$A_{rectangle} + A_{semicircle}$$

A = $8 m * 6 m + \frac{1}{2} \pi * 3^2 m^2$
A = $48 m^2 + \frac{1}{2} 9 m^2 \pi$
A = $48 m^2 + 4.5 m^2 * \pi$
A = $48 m^2 + 14.1 m^2$
A = $62.1 m^2$

19. Construct the bisector of the given angle.

20. Construct a line parallel to a given line through a point not on the given line.

 $\overleftarrow{TR}\parallel \overleftarrow{ZH}$