\qquad
\qquad Date: \qquad

Approximating Square Roots

Answers:

Part A: Color the box GREEN if the given number is a perfect square and RED if it is not.

Part B: Find the value of the following.

1) $\pm \sqrt{25}= \pm 5$
2) $\sqrt{-25}=$ undefined
3) $\sqrt{1600}=40$
4) $\sqrt{121}=11$
5) $\sqrt{-1}=$ undefined
6) $\pm \sqrt{1}= \pm 1$
7) $\pm \sqrt{196}= \pm 14$
8) $\sqrt{40000}=200$
9) $\sqrt{225}=15$
10) $\sqrt{-100}=$ undefined
\qquad
\qquad
\qquad

Approximating Square Roots

Part C: Find two consecutive integers between which $\sqrt{66}$ lies.
The radicand is 66 .

The closest perfect square number less than 66 is 64.

The closest perfect square number greater than 66 is 81 .

$$
\begin{aligned}
\sqrt{64} & <\sqrt{66} \\
8 & <\sqrt{81} \\
8 & <\sqrt{66}
\end{aligned}<9
$$

The square root of $\sqrt{65}$ is between 8 and 9 .

Part D: Find two rational numbers with two decimal places between which $\sqrt{66}$ lies.
Since 66 is between 64 and $81, \sqrt{66}$ must be between $\sqrt{64}$ and $\sqrt{81.65} \sqrt{64}<\sqrt{66}<\sqrt{81}$

$$
8<\sqrt{66}<9
$$

By estimation, we have:
8. $1^{2}=65.61$ So,$\sqrt{66}$ lies between 8.1
8. $2^{2}=67.24 \quad$ and 8.2.

To find the two rational numbers with two decimal places between which $\sqrt{66}$ lies, let's estimate further:
$8.11^{2}=65.7721$
8. $12^{2}=65.9344$ So, $\sqrt{5}$ lies between 8.12
8. $13^{2}=66.0969 \quad$ and 8.13.

The square root of $\sqrt{66}$ is between
\qquad
\qquad
\qquad

Approximating Square Roots

Part E: Approximate $\sqrt{66}$ up to the fourth estimate.
Since 66 is between 64 and $81, \sqrt{66}$ must be between $\sqrt{64}$ and $\sqrt{81}$.

$$
\begin{aligned}
\sqrt{64} & <\sqrt{66}<\sqrt{81} \\
8 & <\sqrt{66}<9
\end{aligned}
$$

Step 1: The integer closest to $\sqrt{66}$ is 8.
The first estimate is 8.

Step 2: Divide the radicand by the first estimate.

$$
66 \div 8=8.25
$$

Step 3: To find the second estimate, find the average of the quotient in Step 2 and the first estimate.

$$
\frac{8.25+8}{2}=\frac{16.25}{2}=8.125
$$

The second estimate is 8.125 .

Step 4: Repeat Step 2. But this time, divide the radicand by the second estimate.

$$
66 \div 8.125 \approx 8.123
$$

Step 5: To find the third estimate, repeat Step 3. This time, find the average of the quotient in Step 4 and the second estimate.

$$
\frac{8.123+8.125}{2}=\frac{16.248}{2}=8.124
$$

The third estimate is 8.124 .
\qquad
\qquad Date: \qquad

Approximating Square Roots

Step 6: Repeat Step 2. But this time, divide the radicand by the third estimate.

$$
66 \div 8.124 \approx 8.124
$$

Step 5: To find the fourth estimate, repeat Step 3. This time, find the average of the quotient in Step 4 and the third estimate.

$$
\frac{8.123+8.124}{2}=\frac{16.247}{2}=8.1235
$$

The closest approximate of $\sqrt{66}$ is 8.1235 .

