Name:	Period:	Date:	
Approximating Square Roots			Assignment

Answers:

Part A: Color the box GREEN if the given number is a perfect square and RED if it is not.

Part B: Find the value of the following.

1)	$\pm \sqrt{25} = \pm 5$	2) $\sqrt{-25} = 1$	undefined
•	<u> </u>		

- 3) $\sqrt{1600} = \frac{40}{40}$ 4) $\sqrt{121} = \frac{11}{10}$
- 5) $\sqrt{-1} =$ undefined 6) $\pm \sqrt{1} = \pm 1$
- 7) $\pm \sqrt{196} = \pm 14$ 8) $\sqrt{40000} = 200$
- 9) $\sqrt{225} = 15$ 10) $\sqrt{-100} =$ undefined

Name:	Period:	Date:	
Approximating Square Roots			Assignment

Part C: Find two consecutive integers between which $\sqrt{66}$ lies.

The radicand is 66.

The closest perfect square number less than 66 is 64.

The closest perfect square number

greater than 66 is 81.

 $\sqrt{64} < \sqrt{66} < \sqrt{81}$ $8 < \sqrt{66} < 9$

The square root of $\sqrt{65}$ is between 8 and 9.

Part D: Find two rational numbers with two decimal places between which $\sqrt{66}$ lies. Since 66 is between 64 and 81, $\sqrt{66}$ must be between $\sqrt{64}$ and $\sqrt{81.65}\sqrt{64} < \sqrt{66} < \sqrt{81}$ $8 < \sqrt{66} < 9$

By estimation, we have:

8. $1^2 = 65.61$ So, $\sqrt{66}$ lies between 8.1 8. $2^2 = 67.24$ and 8.2.

To find the two rational numbers with two decimal places between which $\sqrt{66}$ lies, let's estimate further:

8. $11^2 = 65.7721$ 8. $12^2 = 65.9344$ So, $\sqrt{5}$ lies between 8.12 8. $13^2 = 66.0969$ and 8.13.

The square root of $\sqrt{66}$ is between

🚼 MathTeacherCoach.com

Approximating Square Roots

Part E: Approximate $\sqrt{66}$ up to the fourth estimate.

Since 66 is between 64 and 81, $\sqrt{66}$ must be between $\sqrt{64}$ and $\sqrt{81}$.

$$\sqrt{64} < \sqrt{66} < \sqrt{81}$$
$$8 < \sqrt{66} < 9$$

Step 1: The integer closest to $\sqrt{66}$ is 8.

The first estimate is 8.

Step 2: Divide the radicand by the first estimate.

 $66 \div 8 = 8.25$

Step 3: To find the second estimate, find the average of the quotient in Step 2 and the first estimate.

 $\frac{8.25+8}{2} = \frac{16.25}{2} = 8.125$

The second estimate is 8.125.

Step 4: Repeat Step 2. But this time, divide the radicand by the second estimate.

 $66 \div 8.125 \approx 8.123$

Step 5: To find the third estimate, repeat Step 3. This time, find the average of the quotient in Step 4 and the second estimate.

$$\frac{8.123 + 8.125}{2} = \frac{16.248}{2} = 8.124$$

The third estimate is 8.124.

Assignment

_____ Period: _____ Date: _____

Name:				 	Period: _	Date:	
	_	_					

Approximating Square Roots

Step 6: Repeat Step 2. But this time, divide the radicand by the third estimate.

 $66\div 8.124\approx 8.124$

Step 5: To find the fourth estimate, repeat Step 3. This time, find the average of the quotient in Step 4 and the third estimate.

$$\frac{8.123 + 8.124}{2} = \frac{16.247}{2} = 8.1235$$

The closest approximate of $\sqrt{66}$ is 8.1235.

Assignment

4