\qquad Date: \qquad

Approximating Square Roots

Guide Notes
SQUARE OF A NUMBER
To square a number means to multiply a number by itself.

This is read as " 5 squared is 25 ".
25 is obtained by making 5 a factor, twice.

More examples:

$$
\begin{gathered}
0 \text { squared }=0^{2}=0 \cdot 0=0 \\
\mathbf{1} \text { squared }=1^{2}=1 \cdot 1=1 \\
-1 \text { squared }=(-1)^{2}=-1 \cdot-1=1 \\
2 \text { squared }=2^{2}=2 \cdot 2=4 \\
-\mathbf{2} \text { squared }=(-2)^{2}=-2 \cdot-2=4 \\
3 \text { squared }=3^{2}=3 \cdot 3=9 \\
-3 \text { squared }=(-3)^{2}=-3 \cdot-3=9
\end{gathered}
$$

$$
0,1,4,9, \ldots \text { are called PERFECT SQUARE NUMBERS. }
$$

Relating this to shapes: To create a perfect square, all four sides must have equal measures.

\qquad
\qquad
\qquad

Approximating Square Roots

Guide Notes

Sample Problem 1: Read and answer the questions below:
a. Is 81 a perfect square number? Justify your answer.

Answer:

81 is a perfect square number because it can be obtained by making 9 a factor twice.
b. Is 121 a perfect square number? Justify your answer. Answer:

121 is a perfect square number because it can be obtained by making 11 a factor twice.

Sample Problem 2: Square the following numbers.
a) 7
b) -5

$$
7^{2}=7 \cdot 7=49
$$

$$
(-5)^{2}=-5 \cdot-5=25
$$

c) 8
d) -10

$$
8^{2}=8 \cdot 8=64
$$

$$
(-10)^{2}=(-10) \cdot(-10)=100
$$

\qquad
\qquad Date: \qquad

Approximating Square Roots

Guide Notes

SQUARE ROOT OF A NUMBER

Subtraction is the inverse of addition, and so is division the inverse of multiplication. The inverse of squaring a number is by getting its SQUARE ROOT.

The symbol of square root is denoted by the symbol: $\sqrt{ }$. The symbol is also referred to as the "radical" sign. Any number placed inside the radical sign is called a "radicand".

$$
\text { If } a^{2}=b, \text { then a number } a \text { is a square root of } b, a=\sqrt{b} .
$$

All positive real numbers have two roots, one positive and one negative. Normally, if we want to indicate that we want to get both roots, we can use the symbol: $\pm \sqrt{ }$.

Study the examples below:
Since and , then 1 and $\mathbf{- 1}$ are both square roots of 1.
\qquad
\qquad Date: \qquad

Approximating Square Roots

Guide Notes

also be written as $\pm 1, \pm 2$ and ± 3.

PRINCIPAL SQUARE ROOT

The positive square root of any non-negative real number is called the principal square root.

For any non-negative real numbers a and b such that $a^{2}=b, a$ is called the principal square root of b, denoted by \sqrt{b}.

Since $1^{2}=1$, then $\sqrt{1}=1$
The principal square root of 1 is 1 .

$$
\text { Since } 2^{2}=4, \text { then } \sqrt{4}=2
$$

\qquad
\qquad Date: \qquad

Approximating Square Roots

Guide Notes
The principal square root of 4 is 2 .

Since $3^{2}=9$, then $\sqrt{9}=3$
The principal square root of 9 is 3 .

The square root of a negative number is not defined. This means that it has no value at all.

$$
\begin{aligned}
& \sqrt{-1}=\text { undefined } \\
& \sqrt{-4}=\text { undefined } \\
& \sqrt{-9}=\text { undefined }
\end{aligned}
$$

Sample Problem 3: Find the value of the following.
a) $\pm \sqrt{49}= \pm 7$
b) $\sqrt{-49}$ undefined
c) $\sqrt{121}=11$
d) $\pm \sqrt{16}= \pm 4$
e) $\sqrt{100}=10$
f) $\pm \sqrt{64}= \pm 8$
\qquad
\qquad Date: \qquad

Approximating Square Roots

Guide Notes

APPROXIMATING THE SQUARE ROOT OF A NUMBER

The square root of perfect square numbers like $1,4,9,16,25$, and 36 are rational numbers. Nonperfect square numbers on the other hand have irrational numbers as roots. By irrational, it means that the square roots cannot be expressed as a ratio of two integers.

It can't be expressed as a ratio of two integers:

Irrational numbers complete the set of real numbers. They fill up the spaces between rational numbers. This can be visualized using a number line.

Look at the approximate square roots of some non-perfect square numbers.

$$
\sqrt{2}=1.414
$$

\qquad
\qquad
\qquad

Approximating Square Roots

$$
\begin{aligned}
& \text { Guide Notes } \\
& \qquad \begin{array}{l}
\sqrt{8}=2.828 \ldots \\
\sqrt{10}=3.162 \ldots
\end{array}
\end{aligned}
$$

The square root of a non-perfect square number can be found between two rational numbers. It can be approximated by looking for two consecutive integers or rational numbers where the square root lies in between.

$\sqrt{2}$ is found between rational numbers 1 and 2.
$\sqrt{8}$ is found between rational numbers 2 and 3 .
$\sqrt{10}$ is found between rational numbers 3 and 4 .

Example 1: Find two consecutive integers between which $\sqrt{12}$ lies.

Step 1: Examine the radicand.
The radicand is 12 .

Step 2: Look for a perfect square number, less than and closest to the radicand.
\qquad
\qquad

Approximating Square Roots

Guide Notes

The closest perfect square number less than 12 is 9 .

Step 3: Look for a perfect square number, greater than and closest to the radicand.
The closest perfect square number greater than 12 is 16 .

$$
\begin{aligned}
\sqrt{9} & <\sqrt{12}<\sqrt{16} \\
3 & <\sqrt{12}<4
\end{aligned}
$$

Therefore, the value of $\sqrt{12}$ is between rational numbers 3 and 4 .

Grab a calculator and confirm to confirm the answer:
$V(12)$
$3.4641016151377545870548926830117 . .$.

$$
\sqrt{12} \approx 3.464 \ldots
$$

3.464 ... is between 3 and 4.

Example 2: Find two rational numbers with two decimal places between which $\sqrt{7}$ lies.

Step 1: Examine the radicand.
The radicand is 7 .

Step 2: Look for a perfect square number, less than and closest to the radicand.
\qquad
\qquad Date: \qquad

Approximating Square Roots

Guide Notes

The closest perfect square number less than 7 is 4 .
Step 3: Look for a perfect square number, greater than and closest to the radicand.
The closest perfect square number greater than 7 is 9 .

$$
\begin{aligned}
\sqrt{4} & <\sqrt{7}<\sqrt{9} \\
2 & <\sqrt{7}<3
\end{aligned}
$$

Therefore, the value of $\sqrt{7}$ is between rational numbers 2 and 3 .

To find two rational numbers with two decimal places between which $\sqrt{7}$ lies, let's do some estimation. Since $\sqrt{7}$ lies between 2 and 3 , we can square the decimal numbers between 2 and 3 to start the estimation.

$$
\begin{aligned}
& 2.1^{2}=4.41 \\
& 2.2^{2}=4.84 \\
& 2.3^{2}=5.29 \\
& 2.4^{2}=5.76 \\
& 2.5^{2}=6.25 \\
& 2.6^{2}=6.76 \\
& 2.7^{2}=7.29
\end{aligned}
$$

To find the closest approximate square root, let's continue the estimation. Since we are looking for two rational numbers with two decimal places between which $\sqrt{7}$ lies, we'll use the decimal numbers between 2.6 and 2.7.

$$
\begin{aligned}
& 2.61^{2}=6.8121 \\
& 2.62^{2}=6.8644
\end{aligned}
$$

\qquad
\qquad
\qquad

Approximating Square Roots

$$
\begin{aligned}
& \text { Guide Notes } \\
& 2.63^{2}=6.9619 \\
& 2.64^{2}=6.9696 \\
& 2.65^{2}=7.0225
\end{aligned}
$$

So, the value of $\sqrt{7}$ is between rational numbers with two decimal places 2.64 and 2.65

Example 3: Find two rational numbers with two decimal places between which $\sqrt{18}$ lies. (*Note: follow the same steps as we did in the previous examples.)

Since 18 is between 16 and $25, \sqrt{18}$ must be between $\sqrt{16}$ and $\sqrt{25}$.

$$
\begin{aligned}
\sqrt{16} & <\sqrt{18}<\sqrt{25} \\
4 & <\sqrt{18}<5
\end{aligned}
$$

By estimation, we have:

$$
\begin{aligned}
& 4.1^{2}=16.81 \\
& 4.2^{2}=17.64 \\
& 4.3^{2}=18.49
\end{aligned} \quad \text { So, lies between } 4.2 \text { and }
$$

To find the two rational numbers with two decimal places between which $\sqrt{18}$ lies, let's estimate further:

$$
\begin{aligned}
& 4.21^{2}=17.7241 \\
& 4.22^{2}=17.8084 \\
& 4.23^{2}=17.8929 \\
& 4.24^{2}=17.9776 \\
& 4.25^{2}=18.0625
\end{aligned} \quad \text { So, lies between } 4.24 \text { and }
$$

\qquad
\qquad Date: \qquad

Approximating Square Roots

Guide Notes
So, the value of $\sqrt{18}$ is between rational numbers with two decimal places 4.24 and 4.25.

Sample Problem 4: Find two consecutive integers between which the given square root lies.
a) $\sqrt{11}$
b) $\sqrt{35}$

The radicand is 11.
The radicand is 35 .

The closest perfect square number less than 11 is 9.

The closest perfect square number greater than 11 is 16.

$$
\begin{aligned}
\sqrt{9} & <\sqrt{11}<\sqrt{16} \\
3 & <\sqrt{11}<4
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{25} & <\sqrt{35}<\sqrt{36} \\
5 & <\sqrt{35}<6
\end{aligned}
$$

The square root of $\sqrt{11}$ is between 3 and 4 . The square root of $\sqrt{35}$ is between 5 and 6 .
c) $\sqrt{28}$
d) $\sqrt{91}$
\qquad
\qquad Date: \qquad

Approximating Square Roots

Guide Notes
The radicand is 28 .

The closest perfect square number less than 28 is 25.

The closest perfect square number less than 91 is 81.

The closest perfect square number greater than 28 is 16 .

$$
\begin{aligned}
\sqrt{25} & <\sqrt{28}<\sqrt{36} \\
5 & <\sqrt{28}<6
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{81} & <\sqrt{91}<\sqrt{100} \\
9 & <\sqrt{91}<10
\end{aligned}
$$

The square root of $\sqrt{28}$ is between 5 and 6 . The square root of $\sqrt{91}$ is between 9 and 10 .

Sample Problem 5: Determine two rational numbers with two decimal places between which the given square root lies.
a) $\sqrt{5}$
b) $\sqrt{23}$

Since 5 is between 4 and $9, \sqrt{5}$ must be between $\sqrt{4}$ and $\sqrt{9}$.

$$
\begin{aligned}
& \sqrt{4}<\sqrt{5}<\sqrt{9} \\
& 2<\sqrt{5}<3
\end{aligned}
$$

By estimation, we have:
$2.1^{2}=4.41$
$2.2^{2}=4.48$ So, lies between 2.2 and
$2.3^{2} \xlongequal{=} 5.29$
2.3.

By estimation, we have:

$$
\begin{aligned}
& \sqrt{16}<\sqrt{23} \\
& 4<\sqrt{23}<\sqrt{25} \\
&<5
\end{aligned}
$$

Since 23 is between 16 and $25, \sqrt{23}$ must be between $\sqrt{16}$ and $\sqrt{25}$.

$$
4.6^{2}=21.16
$$

$4.7^{2}=22.09$ So, lies between 4.7 and
$4.8^{2}=23.04 \quad 4.8$.
\qquad
\qquad Date: \qquad

Approximating Square Roots

Guide Notes
To find the two rational numbers with two decimal places between which $\sqrt{5}$ lies, let's estimate further:

To find the two rational numbers with two decimal places between which $\sqrt{23}$ lies, let's estimate further:

$$
\begin{align*}
& 2.21^{2}=4.8841 \\
& 2.22^{2}=4.9284 \\
& 2.23^{2}=4.9729 \text { So, lies between } 2.23 \text { and } \\
& 2.24^{2}=5.0176 \quad 2.24
\end{align*}
$$

$4.76^{2}=22.6576$
$4.77^{2}=22.7529$
$4.78^{2}=22.8484$
$4.79^{2}=22.9441^{\text {So, }}$, lies between 4.79 and $4.80^{2}=23.04$

The square root of $\sqrt{5}$ is between
2.23 and 2.24.

The square root of $\sqrt{23}$ is between
4.79 and 4.80 .

APPROXIMATING THE SQUARE ROOT OF A NUMBER BY AVERAGING

Another strategy to approximate square roots is by averaging. This is a less complicated method that involves square root estimates. Study the examples below:

Example 1: Approximate $\sqrt{12}$.

Since 12 is between 9 and $16, \sqrt{12}$ must be between $\sqrt{9}$ and $\sqrt{16}$.

$$
\begin{aligned}
\sqrt{9} & <\sqrt{12}<\sqrt{16} \\
3 & <\sqrt{12}<4
\end{aligned}
$$

\qquad
\qquad
\qquad

Approximating Square Roots

Guide Notes

Step 1: To find the first estimate, choose the integer that is closest to $\sqrt{12}$.
The integer closest to $\sqrt{12}$ is 3 .
The first estimate is 3 .

Step 2: Divide the radicand by the first estimate.

$$
12 \div 3=4
$$

Step 3: To find the second estimate, find the average of the quotient in Step 2 and the first estimate.

$$
\frac{3+4}{2}=\frac{7}{2}=3.5
$$

The second estimate is 3.5 .

Step 4: Repeat Step 2. But this time, divide the radicand by the second estimate.

$$
12 \div 3.5 \approx 3.429
$$

(Rounded to the nearest thousandths)

Step 5: To find the third estimate, repeat Step 3. This time, find the average of the quotient in Step 4 and the second estimate.

$$
\frac{3.5+3.429}{2}=\frac{6.929}{2}=3.4645
$$

Therefore, the closest approximate of $\sqrt{12}$ is 3.46 .

Example 2: Approximate $\sqrt{5}$. Copyright © MathTeacherCoach.com
\qquad
\qquad

Approximating Square Roots

Guide Notes

Since 5 is between 4 and $9, \sqrt{5}$ must be between $\sqrt{4}$ and $\sqrt{9}$.

$$
\begin{gathered}
\sqrt{4}<\sqrt{5}<\sqrt{9} \\
2<\sqrt{12}<3
\end{gathered}
$$

Step 1: To find the first estimate, choose the integer that is closest to $\sqrt{5}$.
The integer closest to $\sqrt{5}$ is 2 .
The first estimate is 2 .

Step 2: Divide the radicand by the first estimate.

$$
5 \div 2=2.5
$$

Step 3: To find the second estimate, find the average of the quotient in Step 2 and the first estimate.

$$
\frac{2.5+2}{2}=\frac{4.5}{2}=2.25
$$

The second estimate is 2.25 .

Step 4: Repeat Step 2. But this time, divide the radicand by the second estimate.

$$
5 \div 2.25 \approx 2.222
$$

(Rounded to the nearest thousandths)

Step 5: To find the third estimate, repeat Step 3. This time, find the average of the quotient in Step 4 and the second estimate.
\qquad
\qquad

Approximating Square Roots

Guide Notes
$\frac{2.25+2.222}{2}=\frac{4.472}{2}=2.236$

Therefore, the closest approximate of $\sqrt{5}$ is 2.236 .

Example 3: Approximate $\sqrt{24}$.

Since 24 is between 16 and $25, \sqrt{24}$ must be between $\sqrt{16}$ and $\sqrt{25}$.

$$
\begin{aligned}
\sqrt{16} & <\sqrt{24} \\
4 & <\sqrt{25} \\
4 & <\sqrt{24}<5
\end{aligned}
$$

Step 1: To find the first estimate, choose the integer that is closest to $\sqrt{24}$.

$$
\text { The integer closest to } \sqrt{24} \text { is } 5 \text {. }
$$

The first estimate is 5 .

Step 2: Divide the radicand by the first estimate.

$$
24 \div 5=4.8
$$

Step 3: To find the second estimate, find the average of the quotient in Step 2 and the first estimate.

$$
\frac{4.8+5}{2}=\frac{9.8}{2}=4.9
$$

\qquad
\qquad Date: \qquad

Approximating Square Roots

> Guide Notes
> The second estimate is 4.9 .

Step 4: Repeat Step 2. But this time, divide the radicand by the second estimate.

$$
24 \div 4.9 \approx 4.898
$$

(Rounded to the nearest thousandths)

Step 5: To find the third estimate, repeat Step 3. This time, find the average of the quotient in Step 4 and the second estimate.

$$
\frac{4.9+4.898}{2}=\frac{9.798}{2}=4.899
$$

Therefore, the closest approximate of $\sqrt{24}$ is 4.899 .
\qquad Date: \qquad

Approximating Square Roots

Guide Notes
Sample Problem 6: Approximate the square root up to the third estimate by averaging
a) $\sqrt{8}$
b) $\sqrt{29}$

Since 8 is between 4 and $9, \sqrt{8}$ must be between $\sqrt{4}$ and $\sqrt{9}$.

$$
\begin{aligned}
\sqrt{4} & <\sqrt{8}
\end{aligned}<\sqrt{9} 0 \text { 友 }<3
$$

Since 29 is between 25 and $36, \sqrt{29}$ must be between 25 and $\sqrt{26}$.

$$
\begin{aligned}
\sqrt{25} & <\sqrt{29}<\sqrt{36} \\
5 & <\sqrt{29}<6
\end{aligned}
$$

Step 1: The integer closest to $\sqrt{8}$ is 3. The first estimate is 3 .

Step 2: Divide the radicand by the first estimate.

$$
8 \div 3 \approx 2.67
$$

Step 3: To find the second estimate, find the average of the quotient in Step 2 and the first estimate.

$$
\frac{2.67+3}{2}=\frac{5.67}{2}=4.832
$$

The second estimate is 4.832 .
Step 4: Repeat Step 2. But this time, divide the radicand by the second estimate.

$$
8 \div 4.832 \approx 0.828
$$

Step 5: To find the third estimate, repeat Step 3. This time, find the average of the quotient in Step 4 and the second estimate.

$$
\frac{0.828+4.832}{2}=\frac{5.66}{2}=2.83
$$

Copyright © MathTeacherCoach.com

Step 3: To find the second estimate, find the average of the quotient in Step 2 and the first estimate.

$$
\frac{5.8+5}{2}=\frac{10.8}{2}=5.4
$$

The second estimate is 5.4 .
Step 4: Repeat Step 2. But this time, divide the radicand by the second estimate.

$$
29 \div 5.4 \approx 5.37
$$

Step 5: To find the third estimate, repeat Step 3. This time, find the average of the quotient in Step 4 and the second estimate.

$$
\frac{5.37+5.4}{2}=\frac{10.77}{2}=5.385
$$

関 MathTeacherCoach.com
\qquad
\qquad Date: \qquad

Approximating Square Roots

Guide Notes

The closest approximate of $\sqrt{8}$ is 2.83
The closest approximate of $\sqrt{29}$ is 5.385 .

